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Discriminative and Robust Competitive
Code for Palmprint Recognition
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Abstract—Various palmprint recognition methods have been
proposed based on orientation features of palmprints. Among
them, the competitive code method using the dominant orien-
tation of palmprint images achieves promising performance in
palmprint recognition. In this paper, we propose a discrimina-
tive and robust competitive code based method, which uses a
more accurate dominant orientation representation of palmprint
images for palmprint authentication. Moreover, we propose to
weight the orientation information of a neighbor area to improve
the precision and stability of the discriminative and robust dom-
inant orientation code. Experiments performed on three types of
palmprint databases and a noisy dataset validate the effectiveness
of the proposed method.

Index Terms—Biometric, discriminative competitive
code (DCC), palmprint recognition, robust orientation
extraction.

I. INTRODUCTION

AS A BIOMETRIC trait, a palmprint contains many stable
and discriminative features, including not only principal

lines and wrinkles but also abundant minutiae and textural fea-
tures [1]–[3]. Palmprint-based authentication is able to achieve
reliable personal verification and identification and it has
received increasing research interest in recent years [4]–[6].
Many methods have been proposed to extract different kinds
of palmprint features for palmprint recognition [7], [8]. For
example, Huang et al. [9] extracted the principle lines of
palmprints for palmprint verification. Dai et al. [10] applied
statistics of ridges to design a high-resolution palmprint
recognition algorithm. Shen et al. [11] used a set of 3-D
Gabor filters with different frequencies and orientations to
extract spatial and spectrum domain features. In addition,
Imtiaz and Fattah [12] proposed a wavelet-based palmprint
recognition method by extracting spatial variations from the
palmprint image. Roux et al. [13] applied a phase-based
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algorithm to extract corresponding point pairs of a palmprint
and Badrinath and Gupta [14] used phase-difference informa-
tion for palmprint recognition. Further, several minutiae-based
feature extraction algorithms were designed for palmprint
recognition [15], [16]. Robust point features of a palmprint
extracted by the scale invariant feature transform were pro-
posed for contactless palmprint recognition [17]. Jia et al. [18]
proposed a palmprint-based method using the histogram of
oriented lines, which is also robust to the change of illu-
mination of a palmprint. The fusion of different kinds of
palmprint features has attracted much research interest [19].
For instance, Li et al. [20] designed a palmprint recognition
method by fusing the 2-D and 3-D features of palmprint.
Xu et al. [21] proposed a sparse representation method for
bimodal palmprint fusion and recognition. Zhang et al. [22]
supplied a multispectral palmprint recognition method which
captured palmprint images under Red, Green, Blue, and near-
infrared light. The four spectral features were fused at the
image or matching score level to improve the performance
of palmprint identification [23]. Xu et al. [24] proposed a
more accurate personal identification method by combining
the left and right palmprints. In addition to the above methods,
subspace-based methods, such as locality preserving projec-
tions and linear discriminant analysis [25], [26], and sparse
representation-based classification methods, such as collab-
orate representation classification [27] and two phase test
sample sparse representation [28], [29], can also be used for
palmprint recognition.

The palmprint is full of lines and textural features which
carry rich distinctive orientation information. So the orien-
tation based methods are deemed to be the most promising
palmprint recognition methods. Zhang et al. [30] first intro-
duced a normalized 2-D Gabor filter to extract a certain
orientation feature of palmprint images, namely palmcode.
After that, the orientation-based coding methods are suc-
cessfully developed. In coding based palmprint recognition
methods, one or several filters are used to extract palmprint ori-
entation features and these features are converted into digital
codes.

The competitive code method [31] is one of the most
impressive orientation-based methods. It uses six Gabor filters
with different orientations to extract the dominant orienta-
tion feature from a palmprint. Six Gabor templates with
six orientations [e.g., jπ/6( j = 0, 1, . . . , 5)] are convoluted
with the palmprint image. The dominant orientation is the
one that produces the most strong response, and the index
j( j = 0, 1, . . . , 5) of which is taken as the competitive code.
The angular distance metric is used to evaluate the distance
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between two competitive codes. In real operation, the com-
petitive code is usually represented as three binary codes via
the rule in [31]. Then, the hamming distance can be used to
match two competitive code planes

D(P, Q) =
∑N

i=1
∑N

j=1
∑3

k=1(Uk(i, j) ⊕ Vk(i, j))

3N2
(1)

where Uk(Vk) is the kth bit binary code plane and “⊕” is
the bitwise “exclusive OR(xor)” operation. The smaller the
hamming distance (or angular distance) is, the more similarity
there is between two palmprint images.

Based on the same rule of the dominant orientation extrac-
tion, the robust line orientation code (RLOC) method [32]
adopts the modified finite radon transform to extract orien-
tation codes. Similarly, the fusion code method [33] uses
four complex Gabor filters with orientations of jπ/4( j =
0, 1, 2, 3) to extract the dominant orientation feature of palm-
print images. The phase with the largest magnitude of the
four filtering results is converted into a pair of binary codes.
Fei et al. [34] noted that the most dominant orientation is
usually associated with top-two strong filtering responses, and
thereby proposed a double orientation code (DOC) method
to encode the orientation indices of Gabor filters with the
top-two maximum filtering responses. Nevertheless, the ori-
entation with the second maximum filtering response is not
always near to the dominant orientation. In addition, to bet-
ter describe the orientation feature of bend lines in palmprint
images, Fei et al. [35] divided one Gabor filter into two half-
Gabor filters to generate two banks of half-Gabor filters, and
then used them to extract two half-orientation codes (HOC)
of palmprint images.

To obtain more orientation features, the binary orienta-
tion co-occurrence vector (BOCV) method [36] also used six
Gabor filters to convolve with palmprint images. Rather than
directly extracting all orientation features, Zhang et al. [37]
extended the BOCV to E-BOCV, in which the fragile bits of
BOCV are detected and filtered out. In addition, Sun et al. [38]
proposed the ordinal code method, in which the orthogonal
line ordinal feature of a palmprint is extracted by using three
integrated perpendicular 2-D Gaussian filters.

Among all palmprint features mentioned above, the domi-
nant orientation should be the most discriminative orientation
feature of a palmprint [31], and the competitive code method
is one of the most promising orientation-based coding meth-
ods, in which the dominant orientation feature of palmprint
images is extracted based on the winner-takes-all rule. It is
based on the theory that the filter response reaches the maxi-
mum when the filter orientation is consistent with that of the
palmprint line. However, in a real operation, the orientations
of adopted Gabor filters are discrete. The orientation feature
extracted by using discrete orientations of Gabor filters usu-
ally only approximates the dominant orientation of a palmprint
image. This motivated us to find a more accurate orientation
feature representation of palmprint images.

In this paper, a discriminative and robust dominant
orientation-based method is proposed, which extracts not only
the dominant orientation code of palmprint images but also
the side code of the dominant orientation code. Combining the
dominant orientation code with the side code can accurately

represent the most dominant orientation feature of palm-
print images. Further, by weighting the convolution results
in orientation extraction, the precision and stability of the
dominant orientation feature can be effectively improved. In
addition, the number of Gabor filters used in the method is
the same as the conventional competitive code method, but
it can obtain more accurate dominant orientation features of
palmprint images. Extensive experiments performed on public
palmprint databases and synthetic noisy dataset demonstrated
that the proposed method outperforms the state-of-the-art
orientation-based coding methods.

The remainder of this paper is organized as follows.
Section II presents a more discriminative and robust compet-
itive code (DRCC) method for orientation representation and
recognition of palmprint images. Extensive experiments are
carried out and analyzed in Section III. Finally, Section IV
concludes this paper.

II. DISCRIMINATIVE AND ROBUST COMPETITIVE CODE

A. Most Dominant Orientation Feature of Palmprint

The principal orientation feature of a palmprint has been
widely used for palmprint recognition. By simply coding the
principal orientation feature plane of the palmprint, accurate
palmprint recognition can be implemented. In the competitive
code method, six Gabor filters with different orientations are
used to convolve with palmprint images. The orientation of
the filter with the maximum filter response is extracted as the
dominant orientation, which is treated as the principal orien-
tation feature of the palmprint. However, in real operation of
the dominant orientation extraction, only limited Gabor filters
with discrete orientations are used. Thus, the orientation of the
filter that has the largest filter response is usually not the exact
principal orientation of the palmprint but is very close to it. As
shown in Fig. 1, two pixels on a principal line of a palmpirnt
are selected to convolve with a set of discrete Gabor filters and
the corresponding filtering results are calculated. The orienta-
tions with the maximum filter response are then determined
as the dominant orientations as shown in Fig. 1, from which
it can be seen that the extracted dominant orientations of
Fig. 1(a) and (b) are the same, e.g., π/6. Actually, the genuine
principal orientations of these two pixels in Fig. 1(a) and (b)
are on the left and right sides of the extracted dominant ori-
entation, respectively. Such observations can also be found on
other points of the palmprint. Hence, the dominant orientation
extracted based on the maximum response may not accurately
represent the principal orientation feature of the palmprint.

The winner-takes-all rule for dominant orientation extrac-
tion is based on the underlying assumption that a pixel in
a palmprint image belongs to a line [30], [31]. The filter
response will reach the maximum when the orientation of
the Gabor filter is consistent with the principal orientation
of the palmprint. In other words, the Gabor filter response
is proportional to the extent of the overlapping between the
principal line and filters. However, since limited discrete filters
are used in real operations, as shown in Fig. 2, it is possible
that no Gabor filter has the same orientation as the princi-
pal orientation of the palmprint image. As a result, in this
case the extracted orientation cannot accurately represent the
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Fig. 1. Relationship between the genuine principal orientation of a palmprint and the dominant orientation obtained using a set of discrete Gabor filters.
(a) and (b) Principal orientation of the palmprint is on the left and right sides of the extracted dominant orientation, respectively.

Fig. 2. Illustration of dominant orientation extraction by using six discrete
Gabor filters. It is possible that no Gabor filter has the same orientation as
the real principal orientation of the palmprint.

principal orientation feature of the palmprint. Intuitively, the
Gabor filters, whose orientations are near the exact principal
orientation of palmprint, usually have greater filter responses
than the others. Therefore, the neighbor orientation of the
extracted dominant orientation, which usually also has a larger
filter response, can be integrated with the dominant orientation
for more accurate representation of palmprint images.

B. Discriminative Competitive Code

In this section, we present the discriminative competitive
code (DCC) method. Various filters, including the Gabor fil-
ter, Random filter, and Gaussian filter [2], are frequently used
to extract orientation features in coding-based methods. Of
them, the Gabor filter is the most promising for orientation
extraction of images [39] because it has good properties of
the 2-D spectral specificity of texture as well as its variation
with 2-D spatial position [40]. Xue et al. [41] compared the
performance of orientation-based palmprint recognition meth-
ods by using different filters and concluded that the Gabor
filter had better performance than other filters. Therefore, in
our method we also use the Gabor filter to extract the orien-
tation features of palmprint images. The Gabor filter has the
following general form:

G(x, y, θ, μ, σ, β)

= 1

2πσβ
exp

[

−π

(
x′2

σ 2
+ y′2

β2

)]

exp
(
i2πμx′) (2)

where x′ = (x−x0) cos θ +(y−y0) sin θ , y′ = −(x−x0) sin θ +
(y − y0) cos θ , (x0, y0) is the center of the function, μ is the
radial frequency in radians per unit length, θ is the orientation
of the Gabor function in radians, and σ and β are the standard
deviations of the elliptical Gaussian along the x and y axes,

respectively. The ranges of x and y are the sizes of the filter
and i = √

(−1). Parameters are empirically set as μ = 0.0916,
and σ = β = 5.6179 [30]. The real part of the Gabor filter is
applied to obtain the orientation feature of a palmprint.

Before feature extraction, the palmprint image is prepro-
cessed to extract the region of interest (ROI) using the method
in [33]. For extraction of dominant orientation, six Gabor fil-
ters with orientations of jπ/6( j = 0, 1, . . . , 5) are used for
filtering the palmprint image. The maximum filter response at
an orientation is treated as confident features of this orienta-
tion [31], [34]. Let Gj be the real part of G with orientation
jπ/6( j = 0, 1, . . . , 5), which are convolved with the palmprint
image by

Rj(x, y) = Gj ∗ I(x, y). (3)

I is a palmprint image, and “*” is the convolution operation.
Rj(x, y) is the filtering response of I(x, y) with Gj. The dom-
inant orientation of point I(x, y) is determined by using the
winner-takes-all rule that treats the orientation with the max-
imum filtering response as the dominant orientation of the
palmprint

C(x, y) = arg max
j

Rj(x, y), ( j = 0, 1, . . . , 5) (4)

where C is the dominant orientation code of the palmprint
image. Let Cleft and Cright represent the two nearest neighbor
orientation indices of C on the left and right sides of C, respec-
tively. These two neighbor orientation indices are calculated
as follows:

Cleft =
{

C + 1 if 0 ≤ C ≤ 4

0 if C = 5
(5)

and

Cright =
{

C − 1 if 1 ≤ C ≤ 5

5 if C = 0.
(6)

Then, the Cs, which represents the “side information” of the
obtained dominant orientation of the palmprint image, can be
calculated based on the filtering responses of two neighbor
orientations. Cs is calculated with the rule of

Cs(x, y) =
{

1 if RCleft(x, y) ≥ RCright(x, y)

0 otherwise
(7)

Cs is referred to as the side code. Since C denotes the dom-
inant orientation feature of palmprint image and Cs indicates
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Fig. 3. Procedure for extraction of the winning orientation and side
information.

the side code of the dominant orientation, combining C and
Cs can accurately describe the dominant orientation feature of
palmprint images. The conventional competitive code method
uses six possible orientations to describe the dominant orien-
tation feature of palmprint images. By contrast, the proposed
method adopts 12 possible values to represent the dominant
orientation feature of palmprint images. So it is more accu-
rate and discriminative than the conventional competitive code
method. The combination of C and Cs, i.e., (C, Cs), is referred
to the DCC. An example of calculation of (C, Cs) is depicted
in Fig. 3.

C. Extraction of Discriminative and Robust
Competitive Code

In the extraction of ROI [30], the palmprint image is aligned
based on the gaps between figures and then the center area of a
palmprint image is cropped and normalized as the ROI, which
inevitably encounters some rotation, translation, and scale
variations. In addition, the palmprint images especially those
contactless palmprint images usually contain noises. Thus, the
DCC of the palmprint image may not robustly and accurately
represent the orientation feature of the palmprint image. It is
known that the orientation feature of a palmprint is extracted
based on the texture of a small area of the palmprint image. In
other words, a small area of points in a palmprint image should
have similar orientation features. Therefore, the extraction of
the orientation feature of a point in a palmprint image should
consider the orientation information of the nearby points. This
motivated us to use a weighted template to balance the fil-
ter results of the palmprint image. Intuitively, a more nearby
neighbor of a point should be more related to and contribute
more to the orientation feature of the point. Thus, the Gaussian
filter is an appropriate choice to weight the contributions of a
neighbor area. In general, the Gaussian filter has the following
representation:

Gs(x, y, σ ) = 1

2πσ 2
exp

(

−x2 + y2

2σ 2

)

(8)

where, σ defines the shape of the Gaussian filter. Since the
template should be used in a small area, the size of the
Gaussian filter is empirically defined as 5×5, and σ is empiri-
cally set to 1. Fig. 4 shows the shape of the Gaussian weighting
template.

By using the Gaussian filter template, the Gabor filtering
responses of a palmprint image can be smoothed by weighting
the original filtering responses of the nearby points via

Rbj(x, y) = Gs ∗ Rj(x, y) (9)

Fig. 4. Shape of the Gaussian weighting template.

where, Rj is the original filtering plane calculated by using (4)
and Rbj is the corrected filtering responses on an orientation
of jπ/6, j = 1, 2, . . . , 5. In real operation, (3) and (9) can be
combined to improve the efficiency via

Rbj(x, y) = Ḡj ∗ I(x, y) (10)

where Ḡj = Gj ∗ Gs. Then, the extraction of the dominant
orientation code can be improved based on the weighted filter
results by using

C̃(x, y) = arg max
j

Rbj(x, y), j = 0, 1, . . . , 5. (11)

Similar to (7), the side code of the dominant orientation
code is calculated based on the balanced filtering responses as
follows:

C̃s(x, y) =
{

1 if RbCleft(x, y) ≥ RbCright(x, y)

0 otherwise.
(12)

Since the filter results of the orientation feature of a palm-
print image are weighted combination of the nearby points,
the dominant orientation feature extracted using (11) and (12)
should be more robust than the DCC to the scale, rotation,
translation, and noise. The combination of C̃ and C̃s, i.e.,
(C̃, C̃s), is considered as the DRCC of a palmprint image.

D. Matching

In the matching stage of palmprint images, a similar but
not the same angular distance as the competitive code method
is used to determine the similarity between two palmprint
images. The matching score between two palmprint images
X and Y is defined as

M(X, Y)

= 1

2N2

N∑

i=1

N∑

j=1

[(
C̃X(i, j) == C̃Y(i, j)

)

+
(

C̃X(i, j) == C̃Y(i, j)
)

∩ ¬
(

C̃sX(i, j) ⊕ C̃sY(i, j)
)]

(13)

where C̃X and C̃Y are two DRCC planes of X and Y , C̃sX and
C̃sY are the side code planes of C̃X and C̃Y , respectively, and
N2 is the size of the image. The result of operation “==” is
1 if the two codes are the same; otherwise, the result is 0.
“∩” is the bitwise “AND” operation, “⊕” is the bitwise “xor”
operation, and “¬” is the bitwise “NOT.” It can been seen
that the range of M is between 0 and 1, and the maximum
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Fig. 5. ROI images selected from three types of palmprint databases. (a)–(f) Palmprint ROI images selected from the PolyU, Red, Green, Blue, NIR, and
IITD databases, respectively.

Fig. 6. Matching score distributions obtained using the proposed method. (a)–(f) Distributions of the genuine matching scores and imposter matching scores
on the PolyU, Red, Green, Blue, NIR, and IITD databases, respectively.

matching score is 1. The larger the M(X, Y) is, the higher
similarity between X and Y is.

It is noted that the matching procedure on two DRCC planes
consists of two parts: 1) the dominant orientation code match-
ing and 2) side code matching. The matching score of the
dominant orientation codes is directly obtained based on the
similarity between them. Nevertheless, two side codes are con-
sidered to be matched if these two side codes are the same
and the corresponding dominant orientation codes are also the
same. Therefore, the matching score of the side code involves
the similarity of both the dominant orientation codes and side
codes. The matching scores of the dominant orientation codes
and side codes are fused to obtain the final matching score of
the DRCC.

III. EXPERIMENTS

A series of experiments are carried out to test the perfor-
mance of the proposed method on three types of palmprint
databases: 1) the PolyU; 2) multispectral; and 3) IITD palm-
print databases. Previous state-of-the-art orientation-based
methods are compared with the proposed method.

A. Palmprint Database

The PolyU database (version 2) [42] contains 7752 palm-
print images collected from 193 individuals. The samples of
each individual were collected in two separated sessions and
the average interval between the first and second sessions was
around two months. About ten palmprint images were captured
from both the left and right palm for each individual in each
session. So each individual was asked to contribute around 40
palmprint images. The PolyU palmprint database contains 386
classes and each class contains about 20 palmprint images.

The multispectral palmprint database [42] contains four
spectrum palmprint databases, the Red, Green, Blue, and Near
Infrared (NIR). Each spectrum database was collected from
250 subjects (195 are males and 55 are females) with both
of the left and right palms. The age of them was from 20 to
60 years old. The palmprint images were also captured in two
separated sessions with an interval of about nine days. In a
session, each individual was asked to provide six images for a
palm. In summary, a palm contributed 12 images under each
illumination. Therefore, each spectral database contains 6000
spectral images from 500 palms.
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Fig. 7. ROC curves of different methods on different types of databases. (a)–(f) ROC curves on the PolyU, Red, Green, Blue, NIR, and IITD databases,
respectively.

TABLE I
EERS (%) OF DIFFERENT METHODS ON THREE TYPES OF PALMPRINT DATABASES

The public IITD palmprint database [43] is a different palm-
print database from the above two databases. The images
in the IITD database were captured by a contactless device.
Specially, all palmprint images in the IITD database were
captured in an relative free environment without using any
user-pegs, where the hand are variable in pose, rotation, and
translation. Therefore, the database contains intraclass vari-
ations. The IITD database contains 2600 hand images from
230 individuals. Five or six palmprint images were captured
from each hand of each individual in every session. In exper-
iments, the first five palmprint images from each palm are
employed. Thus, there are 460 different palms and each palm
has five palmprint images. In the database, all palmprint ROI
images have been cropped and then resized to 150 × 150
pixels.

It is seen that different palmprint databases depict differ-
ent kinds of palmprint images. The PolyU and multispectral
palmprint databases characterize the palmprint images under
the normal visible light illumination, Red spectrum, Blue
spectrum, Green spectrum, and NIR spectrum, respectively.
Comparatively, the IITD palmprint database describe the
palmprint images of the real-world environment. To show
the differences of these palmprints, some typical palmprint

ROI images selected from these databases are presented
in Fig. 5.

B. Palmprint Verification

In palmprint verification, each palmprint image in the
database is compared with each of all other images, respec-
tively. A matching is a really genuine match if both of two
compared two samples are from the same palm, otherwise,
the matching is a really imposter match. In the PolyU palm-
print database, there are 7752 samples, so the total number of
matches is 7752*7751/2 = 30 042 876, and of which 74 068
are genuine matches and 29 968 808 are imposter matches. In
the multispectral database, each spectral palmprint database
has 6000 samples, so there are 6000*5999/2 = 17 997 000
matches, and the genuine matching and imposter match-
ing numbers are 33 000 and 17 964 000, respectively. In the
IITD database, there are 4600 genuine matches and 2 369 250
imposter matches.

Fig. 6(a)–(f) shows the distributions of genuine matching
score and imposter matching scores obtained using the pro-
posed method on the PolyU, Red, Green, Blue, NIR, and
IITD databases, respectively. It can be seen that the genuine
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Fig. 8. Palmprint identification error rate. (a)–(f) Error rate of palmprint identification on the PolyU, Red, Green, Blue, NIR, and IITD databases,
respectively.

matching score and imposter matching score have highly sep-
arate distributions on the PolyU and multispectral databases.
The distribution from the IITD database is not as separated
as that on the PolyU database. The main reason is that the
palmprint images of the same palm in the IITD database are
varying owing to rotations and translations. On the other hand,
the imposter matching score is also usually smaller than the
genuine matching score.

Genuine acceptance rate (GAR) and false acceptance rate
(FAR) were used to evaluate the verification performance
of the proposed method. The receiver operating character-
istic (ROC) curve, which is a graph of GAR versus FAR
for all possible decision thresholds, was introduced to com-
pare the performance of different methods. The ROC curves
of the proposed method on different palmprint databases
are shown in Fig. 7. To facilitate comparison with other
methods, ROC curves of the state-of-the-art orientation-
based coding methods, including the competitive code, ordi-
nal code, fusion code, BOCV, E-BOCV, RLOC, DOC, and
HOC methods, are also shown in Fig. 7. From these ROC
curves it can be seen that the proposed method always
achieves the highest GAR against the same FAR among all
methods.

Equal error rate (EER) is the point where the false reject rate
equals to the FAR. The corresponding EER of different coding
methods are presented in Table I. It is seen that the proposed
method achieves the lowest EER among all methods on all
databases. Compared with the conventional competitive code
method, the “drop rate of EER” improved by the proposed
method is about 27.6% ((0.0261-0.0189)/0.0261) on the PolyU

database. For the IITD database, the drop rate of EER is about
21% ((0.0696-0.0548)/0.0696), and the “drop rates of EER” of
more than 10% can also be achieved on the multiple spectral
databases.

C. Palmprint Identification

Identification is implemented by the procedure of one-
against-many comparison which determines the class index
of the query sample. In palmprint identification experiments
of this paper, the first N(N = 1, 2, 3, 4) palmprint images of
each palm are employed as training samples and the remain-
ing palmprint images form the test sample set. Each sample in
the test sample set is compared with all samples of each class
in the training set to calculate the matching score. The class
that produces the highest matching score is treated as the
class of the test sample. Previous state-of-the-art coding-based
methods, such as the competitive code, ordinal code, fusion
code, BOCV, E-BOCV, RLOC, DOC, and HOC methods are
compared with the proposed method. In the competitive code
method, a small matching score between two palmprint images
means high similarity between them. So the class with the
smallest competitive code matching score will be selected
as the class of the testing sample. Some other coding-based
methods, such as the ordinal code, fusion code, BOCV and
E-BOCV methods, also use the same rule as the competi-
tive dode method. The experimental results on three types of
palmprint databases are shown in Fig. 8. It is seen that the
proposed method achieves the lowest identification error rate
among all orientation-based methods.
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TABLE II
EER(%) OF THE PALMPRINT VERIFICATION OBTAINED USING THE DCC

TABLE III
ERROR RATES (%) OF THE PALMPRINT IDENTIFICATION

OBTAINED USING THE DCC AND DRCC

It is noted that both the HOC and DOC methods extract
double codes to present the dominant orientation feature of
palmprint images. However, the motivations of the HOC and
DOC methods are different. The HOC method proposes to
extract the orientation feature of bend lines in palmprint
images. The double codes of the HOC are extracted inde-
pendently and thus they can be the same or different values.
The DOC method proposes to use two neighbor orientations to
capture the dominant orientation feature of palmprint images,
and the double codes of the DOC are always different. The
commonality of the HOC and DOC methods is that the dou-
ble codes of them are in the ranges of 1–6. Different from the
DOC and HOC methods, our method uses a simple and effec-
tive binary side code to accurately denote the real dominant
orientation of palmprint images. The comparison results show
that the dominant orientation code fusing with the side code
outperforms the conventional double code-based methods.

D. Comparison With DCC

To better evaluate the effectiveness of the DRCC, we per-
form palmprint verification and identification using the DCC.
Specifically, we use (C, Cs) calculated by using (4) and (7)
to perform palmprint verification and identification. The
verification and identification results obtained using the DCC
are shown in Tables II and III, respectively. Comparing Table II
with Table I, we see that the DCC can achieve similar EER
on the PolyU and multispectral databases. However, the EER
obtained using the DCC is not as good as that of the DRCC
on the IITD database. The main reason is that the IITD
is a contactless palmprint database, the palmprint images in
which show serious scale, rotation, and translation variations.
Therefore, the DRCC shows better robustness than the DCC to
the variations of scales, rotation and translation. Table III lists
the palmprint identification results obtained using the DCC and
DRCC, where the first to fourth rows are the results of using
the first 1–4 images per palm as training samples, respectively.
It is easy to see that the DRCC method performs better than
the DCC in palmprint identification on the PolyU, Red, Green,

TABLE IV
EER OBTAINED USING DRCC_12 AND DRCC_12_DOMI

ON SIX PALMPRINT IMAGE DATABASES

Blue, and IITD databases in most conditions. It is noted that
the DCC can achieve higher identification accuracy than the
DRCC on the NIR database. The possible reason is that for the
palmprint images in the NIR database the line orientation fea-
ture is not very significant. In summary, the weighting scheme
in DRCC is effective and the DRCC performs better than the
DCC in most cases.

E. Effect of the Number of Gabor Filters

In general, using more orientations of Gabor filters
can extract more accurate dominant orientation features of
palmprint images. In this section, we test the proposed method
using 12 orientations (DRCC_12) with the interval of π/12.
In addition, we also test the DRCC_12 without using the
side code. In other words, only the dominant orientation
code is used in the matching stage, which is referred to
DRCC_12_domi. The EERs obtained using both of them are
shown in Table IV.

From Table IV, we can draw the following conclusions.
First, DRCC_12 performs better than DRCC_12_domi. It
demonstrates that the side code indeed improves the per-
formance of palmprint recognition. Second, DRCC_12_domi
achieves lower EER than the conventional competitive code
method. So using more orientations of filters can extract rela-
tively more accurate dominant orientation feature of palmprint
images. Nevertheless, the improvement is limited. One possi-
ble reason is that using more Gabor filters means that the
orientations of neighbor Gabor filters are very close, and
thereby the filtering results of neighbor orientations are very
similar. As a result, the dominant orientation with the maxi-
mum filtering response becomes sensitive to small rotations,
translations and illuminations. Third, though DRCC_12 and
DRCC_12_domi use more orientations of filters than DRCC,
DRCC outperforms both of them. This demonstrates that the
side code of DRCC is more effective than a conventional
method using more Gabor filters. In addition, there is no doubt
that increasing the number of Gabor filters will increase the
computational cost.

F. Experiments on Noisy Palmprint Image Dataset

In order to evaluate the robustness of the DRCC, we per-
form palmprint recognition on noisy palmprint images. We
simulate noisy palmprint images by imposing 2% “salt and
pepper” noises on the PolyU database. Fig. 9 shows some
noisy palmprint images. We perform palmprint verification and
identification on the synthetic noisy dataset. Further, several
representative orientation-based coding methods are also tested
on the noisy dataset. In Table V, the first row lists the EER,
and the rest four rows summarize the identification error rates
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TABLE V
PALMPRINT VERIFICATION AND IDENTIFICATION RESULTS ON POLYU DATABASES WITH 2% “SALT & PEPPER” NOISES (%)

Fig. 9. Noisy palmprint images. (a) and (b) Original palmprint images.
(c) and (d) Noisy palmprint images.

TABLE VI
COMPUTATIONAL COST OF DIFFERENT CODING METHODS

with using 1–4 images per palm as training samples, respec-
tively. It is seen that the proposed method achieves the lowest
EER and error rate of palmprint identification on the noisy
dataset.

G. Computational Complexity

To evaluate the computational complexity, we compare
the computational time of the proposed method and previ-
ous state-of-the-art orientation-based methods. We choose the
competitive code, BOCV, E-BOCV, and DOC methods as the
baselines for the proposed method uses the similar Gabor fil-
ters as these methods. In addition, the ordinal code, fusion
code, RLOC, and HOC methods are also implemented for
comparison. All methods are implemented using MATLAB
8.1.0 on a PC with configuration of double-core Intel i5-3470
(3.2GHz), RAM 8.00GB, and Windows 7.0 operating system.
Both feature extraction and matching of two palmprint images
are performed 100 times, and the average time taken in each
phase is reported. Table VI summarizes the comparison results,
from which we see that the time of feature extraction of the
proposed method is about 40.123 ms, which is a little more
than that of the competitive code method. The main reason is
that it extracts the additional “side code.” Due to the simple
matching rule, the matching speed of the proposed method is
faster than that of the competitive code method. The total com-
putational cost of the proposed method is about 40.137 ms,
which is comparable to those baseline methods.

IV. CONCLUSION

Orientation features are frequently and successfully used in
coding-based palmprint recognition methods. In this paper, a
novel, simple, and efficient DRCC-based method is proposed.
The method extracts not only the dominant orientation code
but also the side code of palmprint images, and the side code
can accurately represent the dominant orientation feature of
palmprint images. Furthermore, to improve the robustness, the
dominant orientation code and side code are extracted based
on the weighting results of Gabor filtering responses in a
small neighbor area. To evaluate the performance of the pro-
posed method, three types of palmprint databases, as well as a
noisy dataset, are employed. Extensive experiments show that
the proposed method can effectively increase the accuracy of
palmprint verification and identification in comparison with
the state-of-the-art orientation-based methods.
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